Specialization, diversification and environmental technology life-cycle

Nicolò Barbieri ^a Davide Consoli ^b François Perruchas^b

^aDepartment of Economics and Management, Upiversity of Ferrara (Italy) ^bINGENIO (CSIC-Universitat Politecnica de València), València (Spain)

> Eu-SPRI 2018 - June 6-8 ESIEE, Paris

Background	Related literature	Data	Research design	Preliminary results	Conclusions
•	0000	000	000000	00	0

Literature on green technological developments:

• Insights:

- Recent insights emphasise that Green Technologies (GT) require different competences that are far form traditional knowledge bases of industries (De Marchi, 2012; Ghisetti et al. 2015).
- Recent empirical findings suggest that GT are more complex, radical, pervasive and impactful than non-GT (Barbieri et al. 2018)

• Gaps:

- Some literature treats Green Technology (GT) as if it were a *homogeneous* body of techniques
- Others focus on *specific GTs* but lack a global view of their relative positioning in the knowledge space

Main questions:

- Which knowledge structures are associated with GT growth?
 - X Related versus Unrelated Variety
- Does GT maturity imply a differential role of the knowledge structure?
 - $\pmb{\times}$ Identification of life-cycle stage: geographical diffusion & intensity of patenting

Innovation: knowledge accumulation and recombination (Aghion & Howitt, 1992; Weitzman, 1998; Basalla, 1988; Arthur, 2007)

Location matters:

- Marshall (1920): repeated interaction and proximity of goals and of competences
- Jacobs (1969): diversity of competences

Synthesis:

- Within-industry diversity (Related Variety)
- ٠ Between-industry diversity (Unrelated Variety)

(Frenken et al, 2007; Boschma et al., 2009; Boschma and Frenken, 2011)

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆ ○ ◆ ○ ◆

Background	Related literature	Data	Research design	Preliminary results	Conclusions	
O	○●○○	000	000000	00	O	
		Deleted Press and				

Related literature

Complementarity:

 RV & UV distinct but connected dimensions in the multi-stage innovation gradient

- RV: innovations that develop incrementally out of established cognitive structures across connected domains
- UV: more uncertain and initially costly but a catalyst for breakthroughs that span, by necessity or by design, new functionalities

(Castaldi et al, 2015)

Background	Related literature	Data	Research design	Preliminary results	Conclusions	
O	00●0	000	000000	00	O	
		Deleted literature				

Related literature

Life-Cyle:

Technologies co-evolve with the know-how that is needed to implement, use, adapt them (Vona & Consoli, 2014)

- *Early*: exploration, experimentation, competition between different designs, highly localised
- *Development*: standardisation of design, shake out of inferior variants, some diffusion
- Diffusion: stabilisation of design, wider geographical diffusion
- *Maturity*: dominant design, high standardisation, widest geographical diffusion

Complementarity between RV and UV is a dynamic process along the life cycle

- Early phases of technology development call upon more dispersed, unrelated knowledge inputs
- As standardisation increases, established connections across related bits of know-how are better suited to accommodate incremental adaptations of an emerging design

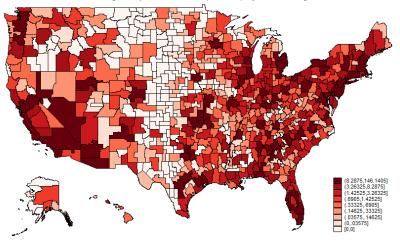
Background	Related literature	Data	Research design	Preliminary results	Conclusions
O	0000	●00	000000	00	O
			Data		

Green patents - Identification

- Collected using Env-Tech (2016) Patent classification based on IPC and CPC
- Env-Tech includes a list of climate change adaptation and mitigation technologies, related to:
 - Water, energy, transportation, buildings, waste and env. goods
- 1,321,000 Green patent families identified in PATSTAT 2016 from 1971 to 2010 worldwide.

Green patents - Geolocalisation

- Geolocalisation of inventors at $\textbf{city}~\textbf{level} \rightarrow 243~000$ patent families in the US
- Projection on 741 commuting zones (CZ, areas identified with journey-to-work data by the US Census Bureau)


Other data

Employment data for each CZ for 1990, 2000, 2010 (calculated from County Business Patterns, US Census Bureau)

Background	Related literature	Data	Research design	Preliminary results	Conclusions
O	0000	O●O	000000	00	O
		-			

Descriptives

Number of green patent families (Deciles) by Commuting Zone

Background	Related literature	Data	Research design	Preliminary results	Conclusions
0	0000	000	000000	00	0

Variety: Example

Level I (k) - UV	Level II (I) - SRV	Level III (m) - RV
C Chemistry	C01B Non-metallic ele-	C01B 6/10 Monoborane; Diborane; Addition
	ments	complexes thereof
		C01B 6/11 Preparation from boron or inor- ganic compounds containing boron and oxy-
		gen
• •		C01B 6/13 Addition complexes of monobo-
		rane or diborane, e.g. with phosphine, arsine or hydrazine
		C01B 6/15 Metal borohydrides; Addition
		complexes thereof
	C01C Ammonia	
	C01D Lithium, sodium,	
	potassium, etc	
	C01F Compounds of the	
	metals beryllium, magne-	
	sium	
D Textiles		
F Mechanical En-		
gineering		

Background	Related literature	Data	Research design	Preliminary results	Conclusions
0	0000	000	●00000	00	0

Measuring Diversification with Entropy

We measure variety of the CZ knowledge base using patent families and technology classification codes (Castaldi et al., 2015):

$$UV_{it} = \sum_{k} s_{k,it} \ln\left(\frac{1}{s_{k,it}}\right)$$

$$SRV_{it} = \sum_{l} s_{l,it} ln\left(\frac{1}{s_{l,it}}\right) - \sum_{k} s_{k,it} ln\left(\frac{1}{s_{k,it}}\right)$$

$$RV_{it} = \sum_{m} s_{m,it} \ln\left(\frac{1}{s_{m,it}}\right) - \sum_{l} s_{l,it} \ln\left(\frac{1}{s_{l,it}}\right)$$

where:

i: commuting zone

k, l, m: Technological categories at IPC 1-digit, 4-digit, 8-digit $s_{k,it}$: Share of patents in category k (l, m)

Technology Life-Cycle (TLC)

Identification of TLC stages: Methodologies

• Patent indicator(s) compared to observed benchmark technologies (e.g. experts, literature,etc.) \rightarrow e.g. curve fitting techniques, vector comparison, etc.

Haupt et al. (2007); Gao et al. (2013); Chang and fan, (2016)

- Stochastic technology life cycle \rightarrow Hidden Markov Model, etc. Lee et al. (2012;2016)
- Normalised maturity index (for Industry LC) Neffke et al. (2011)

Background	Related literature	Data	Research design	Preliminary results	Conclusions
0	0000	000	00000	00	0

Technology Life-Cycle (TLC)

Identification of TLC stages: Proposed approach

- Ubiquity of GT \rightarrow Country specialisation / Technology diffusion
- Patenting intensity \rightarrow Efforts in developing GT

Ubiquity					
		Low	High		
Patenting	High	Development	Diffusion		
	Low	Emergence	Maturity		

Background	Related literature	Data	Research design	Preliminary results	Conclusions
0	0000	000	000000	00	0

Technology Life-Cycle: Indicators

Ubiquity:

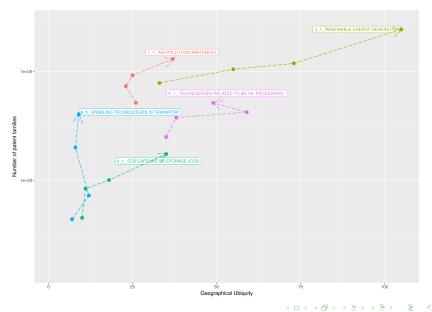
• We calculate the Revealed Technological Advantage (RTA) for each Env-Tech class / country / time period:

$$\textit{RTA}_{\textit{cjt}} = \frac{\textit{Patents}_{\textit{cjt}} / \sum_{j} \textit{Patents}_{\textit{cjt}}}{\sum_{c} \textit{Patents}_{\textit{cjt}} / \sum_{cj} \textit{Patents}_{\textit{cjt}}}$$

- c: country
- j: GT

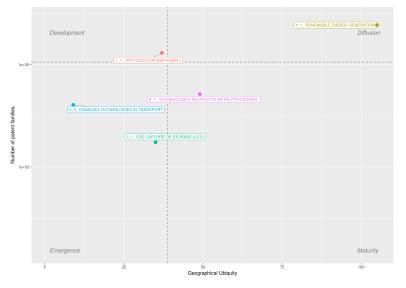
t: time intervals (1971-80; 1981-90; 1991-2000; 2001-10)

• Then, the indicator for each GT is given by the number of countries that exhibit RTA in a particular GT (Petralia et al., 2017; Balland & Rigby, 2017):


$$UBIQUITY_{j,t} = \sum_{c} M_{c,j}$$

With $M_{c,j} = 1$ if RTA > 1

 Therefore, higher ubiquity → higher number of countries having an RTA in that GT


Background	Related literature	Data	Research design	Preliminary results	Conclusions
0	0000	000	000000	00	0

Example of some green technologies - evolution

Example of some green technologies - TLC stages

Background	Related literature	Data	Research design	Preliminary results	Conclusions
0	0000	000	000000	00	0

Research design

• We assess the relationship between variety (Related, Semi-Related and Unrelated) and green patent (GP) stock:

 $\Delta GP_{cz,L,t} = \beta_1 UV_{cz,t_0} + \beta_2 SRV_{cz,t_0} + \beta_3 RV_{cz,t_0} + \theta Controls_{cz,t_0} + \eta_{cz} + \gamma_{s(cz)} + \delta_t + e_{cz,s,t_0} + \theta_{cz,t_0} + \theta_{cz,t_0}$

- Dependent variable: Stock of green patent families in commuting zones (cz) over time intervals t (1990-2000 and 2000-2010) of:
 - Green patent families
 - Non-Green patent families
 - Green patent families over the LC stages
- Controls
 - % of people with higher education
 - Share of employment in R&D intensive sectors
 - Population density
 - Total patent intensity
- η_{cz}: CZ dummies
- γ_{s(cz)}: Year-by-state dummies
- δ_t: Year dummies

Background	Related literature	Data	Research design	Preliminary results	Conclusions
0	0000	000	000000	•0	0

Preliminary results

Table: linear model with Driscoll and Kraay's standard errors - Patent stock 1991-2000 & 2001-2010

	GP		Non-GP	
UV	0.047***	0.056**	0.074	
	(0.005)	(0.011)	(0.040)	
SRV	0.295**	0.302***	0.207**	
	(0.039)	(0.028)	(0.035)	
RV	-0.004	0.019	0.068*	
	(0.018)	(0.020)	(0.019)	
Controls	YES	YES	YES	
CZs dummies	YES	YES	YES	
Year Dummies	YES	YES	YES	
Year-by-state Dummies	YES	NO	YES	
Obs.	1,545	1,545	1,545	

Background	Related literature	Data	Research design	Preliminary results	Conclusions
0	0000	000	000000	0.	0

Preliminary results

Table: Model estimation along life cycle stages - Stocks (1991-2000 & 2001-2010) of green patents in each LC stage

	Emerging	Developing	Diffusing	Mature
UV	-0.220*	0.177	0.048	-0.367*
	(0.054)	(0.173)	(0.017)	(0.103)
SRV	0.334**	0.272	0.257**	0.023
	(0.074)	(0.097)	(0.053)	(0.050)
RV	0.073	0.324**	0.087	0.050
	(0.105)	(0.056)	(0.057)	(0.045)
Controls	YES	YES	YES	YES
001111010				0
CZ dummies	YES	YES	YES	YES
Year Dummies	YES	YES	YES	YES
Year-by-state Dummies	YES	YES	YES	YES
Observations	954	1,104	1,410	921

Background	Related literature	Data	Research design	Preliminary results	Conclusions
0	0000	000	0000000	00	•

Concluding remarks and further extensions

- Unrelated and Semi-related Variety have a positive and significant effect on GP, not so much on Non-GP
- Different types of knowledge, and of knowledge connections, are relevant to technology development along the life cycle
- Future avenues
 - Local drivers: skill endowment, policy, etc;
- Policy implications
 - Specialisation trap: timing of investing in GT in the life cycle
 - Opportunity to develop green technologies according to local production structure