

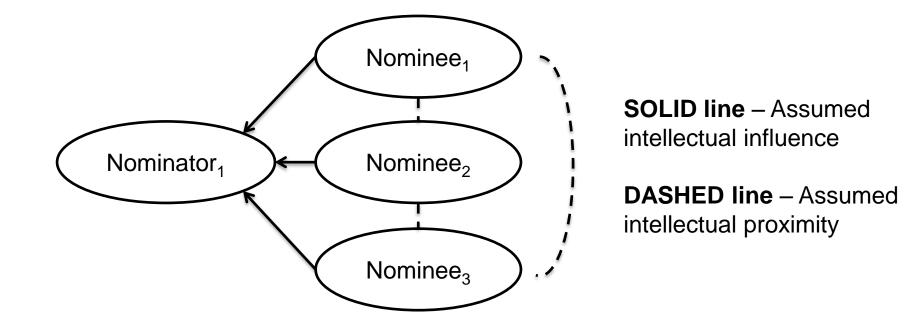
R-QUEST Centre for Research Quality and Policy Impact Studies

Mapping Research Fields Using Co-Nomination Analysis: the Case of Heavy Flavour Physics

Maria Karaulova Maria Nedeva Duncan Thomas

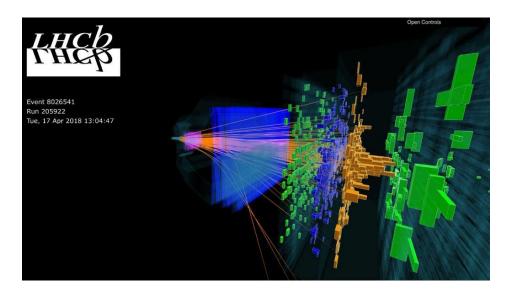
All at Manchester Institute of Innovation Research (MIoIR), The University of Manchester, United Kingdom

EU-SPRI Conference 6-8 June Paris


Objective: is Co-Nomination viable?

- We test potential usefulness of co-nomination approach to map intellectual influence of research fields
- Conventional citation-based methods of mapping science have 'blind spots' in mapping intellectual influence:
 - Citing behaviour differs across research fields, within fields, is performative (Rafols et al. 2012)
 - Methodology bias with citation-based techniques affects results (Boyack and Klavans, 2008)
 - Struggle to map intellectual influence, assess its implications in fields with unconventional communication structure (Manganote et al 2016)
- Research fields are reputational, organised around collective intellectual goals defining material and intellectual rewards (Nedeva 2009; Whitley 2000)

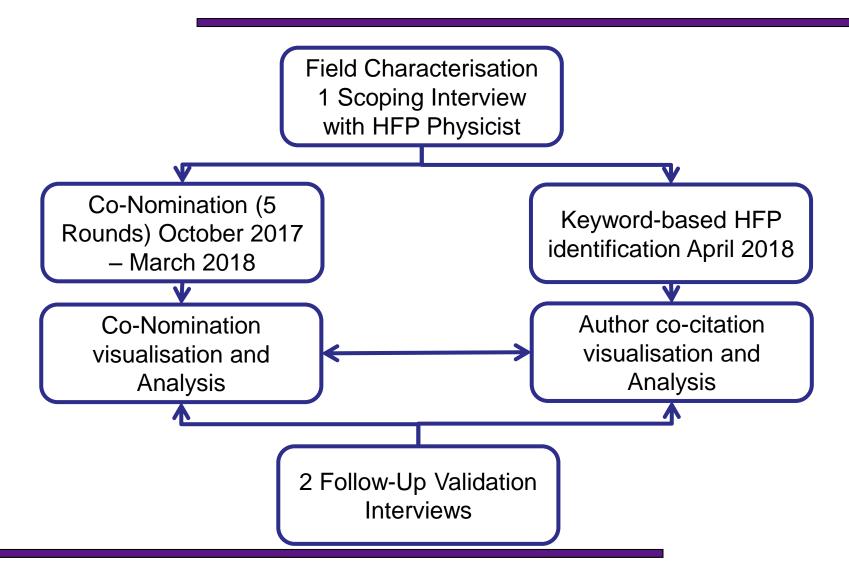
Co-Nomination Approach


- A type of 'snowball' (chain-referral) sampling method, now mostly used to study 'hard to reach' populations, but also knowledge (Fagerberg and Verspagen, 2009), expert (Nedeva et al. 1996) and scientific communities (Libbey and Zaltman, 1967; Crane, 1972).
- Strong to map '**core**' and '**elite**' of the network (Borgatti, 2017), which is **representative** of structural relations between members (Wejnert, 2010)

Research Field: Heavy Flavour Physics (HFP)

- Part of high energy particle physics (HEP) seeking new particles, measuring particle interactions to discover physics beyond the Standard Model
- Distinguished from other HEP by intellectual specialisation: "Hadron containing charm (c) or beauty (b) quarks or antiquarks are known as heavy flavoured particles" (Gershon & Needham 2017)
- Organised around bodies of knowledge rather than associations, institutions or publication outlets
- Reliant upon large-scale, complex, globallyunique facilities (e.g. CERN), continuous longterm funding from national bodies
- Divided into **theoretical and experimental branches** with distinct publication, citation patterns (Lehmann et al., 2003)
- Main experimental group: LHCb at CERN

Empirical Problem with Bibliometric Mapping of Experimental HFP


Test of lepton flavor universality by the measurement of the B-0 -> D*(-) tau(+) nu(tau) branching fraction using three-prong tau decays

By: Aaij, R (Aaij, R.)^[40]; Adeva, B (Adeva, B.)^[39]; Adinolfi, M (Adinolfi, M.)^[48]; Ajaltouni, Z (Ajaltouni, Z.)^[5]; Akar, S (Akar, S.)^[59]; Albrecht, J (Albrecht, J) J.)^[10]; Alessio, F (Alessio, F.)^[40]; Alexander, M (Alexander, M.)^[53]; Albero, AA (Alfonso Albero, A.)^[38,57,92]; Ali, S (Ali, S.)^[43]; Alkhazov, G (Alkhazov, G.)^{[31}]; Cartelle, PA (Cartelle, P. Alvarez)^[55]; Alves, AA (Alves, A. A., Jr.)^[59]; Amato, S (Amato, S.)^[2]; Amerio, S (Amerio, S.)^[23]; Amhis, Y (Amhis, Y.)^[7]; An, L (An, L.)^[3]; Anderlini, L (Anderlini, L.)^[15]; Andreassi, G (Andreassi, G.)^[41]; Andreotti, M (Andreotti, M.)^[17,82]; Andrews, JE (Andrews, J. E.)^[60]; Appleby, RB (Appleby, R. B.)^[56]; Archilli, F (Archilli, F.)^[43]; d'Argent, P (d'Argent, P.)^[12]; Romeu, JA (Romeu, J. Arnau)^[6]; Artamonov, A (Artamonov, A.)^[37]; Artuso, M (Artuso, M.)^[61]; Aslanides, E. (Aslanides, E.)^[6]; Auriemma, G. (Auriemma, G.)^[26]; Baalouch, M. (Baalouch, M.)^[5]; Babuschkin, I. (Babuschkin, I.)^[56]; Bachmann, S (Bachmann, S)^[12]; Back, JJ (Back, J, J)^[50]; Badalov, A (Badalov, A)^[38,88]; Baesso, C (Baesso, C)^[62,63]; Baker, S (Baker, S)^[55]; Balagura, V (Balagura, V.)^[7,77]; Baldini, W (Baldini, W.)^[17]; Baranov, A (Baranov, A.)^[35]; Barlow, RJ (Barlow, R. J.)^[56]; Barschel, C (Barschel, C.)^[40]: Barsuk, S (Barsuk, S.)^[7]; Barter, W (Barter, W.)^[56]; Baryshnikov, F (Baryshnikov, F.)^[32]; Batozskaya, V (Batozskaya, V.)^[29]; Battista, V (Battista, V.)^[41]; Bay, A (Bay, A.)^[41]; Beaucourt, L (Beaucourt, L.)^[4]; Beddow, J (Beddow, J.)^[53]; Bedeschi, F (Bedeschi, F.)^[24]; Bediaga, I (Bediaga, I.)^[1]; Beiter, A (Beiter, A.)^[61]; Bel, LJ (Bel, L. J.)^[43]; Beliy, N (Beliy, N.)^[64,65]; Bellee, V (Bellee, V.)^[41]; Belloli, N (Belloli, N.)^[21,84]; Belous, K (Belous, K.)^[37]; Belyaev, I (Belyaev, I.)^[32]; Ben-Haim, E (Ben-Haim, E.)^[8]; Bencivenni, G (Bencivenni, G.)^[19]; Benson, S (Benson, S.)^[43]; Beranek, S (Beranek, S.)^[9]; Berezhnov, A (Berezhnov, A.)^[33]; Bernet, R (Bernet, R.)^[42]; Berninghoff, D (Berninghoff, D.)^[12]; Bertholet, E (Bertholet, E.)^[8]; Bertolin, A (Bertolin, A.)^[23]; Betancourt, C (Betancourt, C.)^[42]; Betti, F (Betti, F.)^[15]; Bettler, MO (Bettler, M. -O.)^[40]; van Beuzekom, M (van Beuzekom, M.)^[43]; Bezshviko, I (Bezshviko, Ia.)^[42]; Bifani, S (Bifani, S.)^[47]; Billoir, P (Billoir, P)^[8]; Birnkraut, A (Birnkraut, A)^[10]; Bitadze, A (Bitadze, A)^[56]; Bizzeti, A (Bizzeti, A)^[18,96]; Biorn, M (Biorn, M.) ^[57]; Blake, T (Blake, T.)^[50]; Blanc, F (Blanc, F.)^[41]; Blouw, J (Blouw, J.)^[11]; Blusk, S (Blusk, S.)^[61]; Bocci, V (Bocci, V.)^[26]; Boettcher, T (Boettcher, T.)^[58]]; Bondar, A (Bondar, A.)^[36,98]; Bondar, N (Bondar, N.)^[31]; Bonivento, W (Bonivento, W.)^[16]; Bordyuzhin, I (Bordyuzhin, I.)^[32]; Borgheresi, A (Borgheresi, A.)^[21,84]; Borghi, S (Borghi, S.)^[56]; Borisyak, M (Borisyak, M.)^[35]; Borsato, M (Borsato, M.)^[39]; Bossu, F (Bossu, F.)^[7]; Boubdir, M (Boubdir, M.)^[9]; Bowcock, TJV (Bowcock, T. J. V.)^[54]; Bowen, E (Bowen, E.)^[42]; Bozzi, C (Bozzi, C.)^[17,40]; Braun, S (Braun, S.)^[12]; Britton, T (Britton, T.)^[61]; Brodzicka, J (Brodzicka, J.)^[27]; Brundu, D (Brundu, D.)^[16]; Buchanan, E (Buchanan, E.)^[48]; Burr, C (Burr, C.)^[56]; Bursche, A (Bursche, A.)^[16,81]; Buytaert, J (Buytaert, J.)^[40]; Byczynski, W (Byczynski, W.)^[40]; Cadeddu, S (Cadeddu, S.)^[16]; Cai, H (Cai, H.)^[65,66]; Calabrese, R (Calabrese, R.)^[17,82]; Calladine, R (Calladine, R.)^[47]; Calvi, M (Calvi, M.)^[21,84]; Gomez, MC (Calvo Gomez, M.)^[38,88]; Camboni, A (Camboni, A.)^[38,88]; Campana, P (Campana, P.)^[19]; EU-SPRI Conference 6-8. June Paris, Perez, DHC (Campora Perez, D. H.)^[40]; Capriotti, L.)^[56]; Carbone, A. (Carbone, A.)^[15,80]; Carboni, G. (Carboni, G.)^[25,85]; Cardinale, R

(Cardinale, R.)^[20,83]; Cardini, A (Cardini, A.)^[16]; Carniti, P (Carniti, P.)^[21,84]; Carson, L (Carson, L.)^[52]; Akiba, KC (Carvalho Akiba, K.)^[2]; Casse, G (Casse,

Research Design

Mapping heavy Flavour Physics – Author Co-Citation

- Keyword-based search of publications in Web of Science (2013-2018, search date 06 April 2018)
- Goal: maximise precision at expense of recall, capture core contributions in the field
- 2,439 results
- First author co-citation: authors cited more than 10 times; co-citation of 2 authors in same publication assumes intellectual link between them
- 1974 cited authors (nodes) and 386,136 links between them (edges)

```
Query:
```

```
TS=(((Charm* OR bottom* OR beauty*) AND (quark OR meson* OR mixing OR "rare decays")) OR ("b quark*" OR "c quark*" OR "b meson*" OR "c meson*") OR ("b-quark*" OR "c-quark*") OR ("heavy flavour" OR "heavy flavor"))
```

AND WC=(Physics, Particles & Fields)

AND LANGUAGE: (English)

AND DOCUMENT TYPES: (Article)

Step 1: Mapping Heavy Flavour Physics – Author Co-Citation

Catani S.

Lai HL NNPDF Collaboration Frixione Stefano Pumplin J. Campbell J. Cacciari Matteo Alwall J. Martin A. Czakon M.

ALICE collaborationSjostrand Torbjorn GEANT 4 Collaboration CMS Collaboration

CDF Collaboration

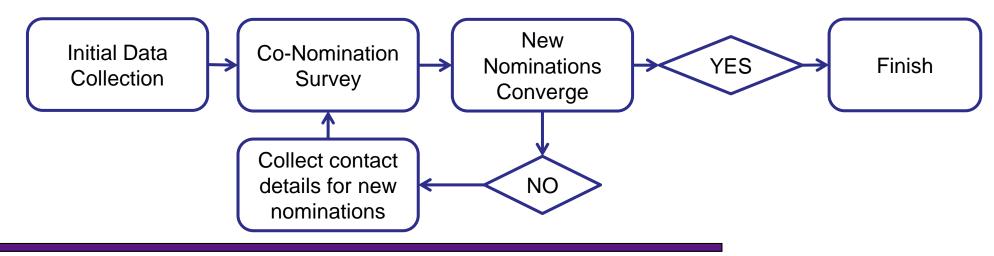
D0 Collaboration Chetyrkin K.

Brodsky S.

Image: Participation
Bench Grad Guado

Main Participation
Main Participation

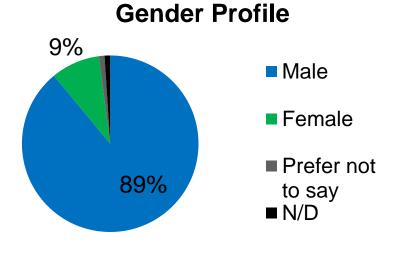
Main Participa

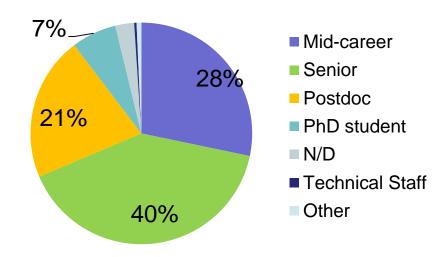

- Top 30 manually checked
- Author data cleaned semi-automatically

- Significant role of 'Group Authors'
- Foundational authors of particle physics
- Most major nodes are not heavy flavour physicists

Co-Nomination Process - Survey

- Co-Nomination question: Can you please name up to five people that influence you the most intellectually at the moment?
- Measures current, direct intellectual influence
- Initial name set composed from 3 regular HFP workshops
- Data collection iterative; finishes when few new nominations

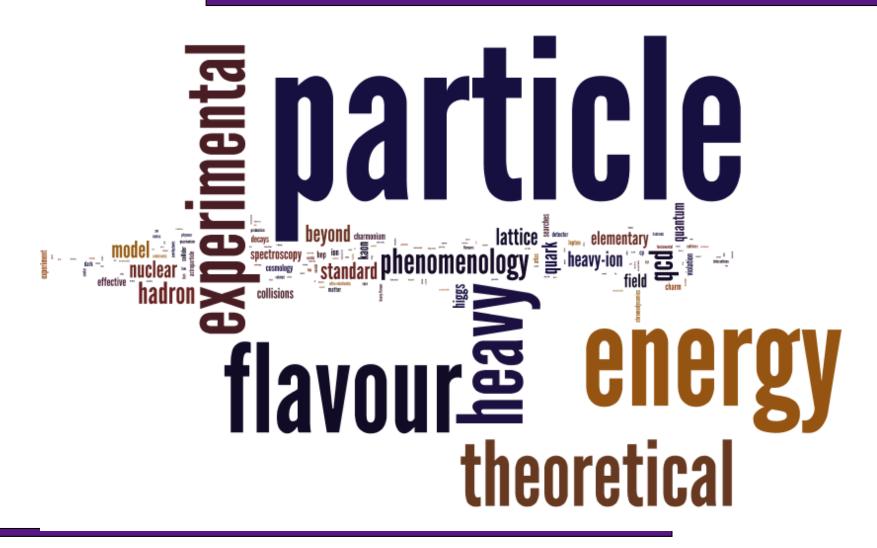



HFP Co-Nomination Data Collection Results

5 survey rounds; 291 responses total; 671 unique nominations (1691 pairs)

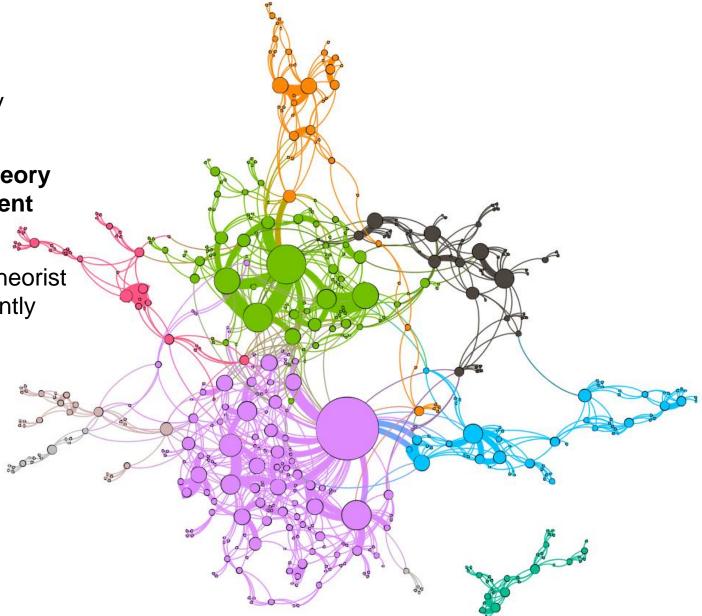
- 20% average response rate
- Mostly from HFP (self opt-in)
- Median experience in field: 15 years
- Median academic age: 14.5 years
- 75% new nominations (R1) → 30% (R5)

	R1	R2	R3	R4	R5
Responses	86	93	71	32	9
RR	17.7%	28.3%	22.3%	12.5%	10%



Career Type and Stage

EU-SPRI Conference 6-8 June Paris


HFP Co-Nomination Data – Respondents' Research Topics

Structure of Intellectual Influence in HFP

- Most nodes are heavy flavour physicists
- Distinction between theory (bottom) and experiment (top)
- Largest node (pink): theorist whose ideas are currently 'exciting'
- 10 clusters represent theory, experiment, equipment divides

Co-Nomination is viable.

- It shows the core structure of the field; major intellectually influential figures
- Intellectual relationships and clusters in HFP (including stable collaborations) are mapped mostly accurately; the scale of intellectual influence is subject to response bias
- It disambiguates experimental branch of HFP, shows intellectually influential figures
 - Somewhat coincides with organisational roles: coordinators, spokespeople
- It reflects intellectual structure, emphasises current 'trendy', 'exciting' topics
 - Mostly **HFP field** members; some minor clusters from related fields

Using Co-Nomination for mapping research fields: pros and cons

Pros

- **Contemporary**, real time field structure
- Disambiguates individual-level reputation, perceived by research field members, not as mediated by citing behaviour
- Meaningful results, validated by field specialists
- Goes where citation-based methods cannot...
 - Can map fields that do not rely on WoS-indexed publications in scholarly communication
 - Can map 'epistemic communities' where knowledge is co-produced (potentially also with non-academic scientists, e.g. industry researchers)

Using Co-Nomination for mapping research fields: pros and cons

Cons

- Response bias: only the core structure is accurate; some groups perceived as significant to the field are not represented strongly enough
- Does not show 'intellectual foundations' (eminent figures)
- Influence of short-lived fads and fashions
- Obtrusive, expensive to implement

Thank You!

maria.karaulova@manchester.ac.uk

EU-SPRI Conference 6-8 June Paris

Next Steps

- Repeat mapping exercise (with matching research design) in two more physics fields:
 - Quantum many-body physics of ultracold atoms
 - (Supersymmetry) String theory
- Compare results
- Analyse potential sources of bias of conomination method to address them
- Analyse strengths and weaknesses of method